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The use of an analytical matching condition in lieu of grid refinement and direct application 
of the no-slip boundary condition in a finite-difference calculation is considered for the case of 
a partially tilled, rapidly rotating cylinder. The right circular cylinder is rotating fast enough 
that the liquid-air interface is nearly vertical. A non-wheel-flow velocity is induced by the 
differential rotation of the top lid. For the flow conditions of interest, the Ekman boundary 
layers on the horizontal surfaces are quite thin and their resolution using a very fine mesh 
makes the overall calculation very time-consuming and costly. We discuss the appropriate 
form of the Ekman matching condition, which has been widely used in rotating flow theory, to 
the case of a cylinder which is only partially full, and the fully implicit implementation of that 
condition into a MAC-derived, time-marching finite-difference calculation. The resulting 
algorithm is stable and efficient and the results compare quite well with calculations made 
using grid refinement and direct application of the no-slip condition and with recently 
published LDV measurements. 

In a recent paper Shadday et al. [l] reported both experimental and numerical 
(finite-difference) results for the flow field in a partially filled, rapidly rotating 
cylinder in which a non-wheel-flow velocity was driven by a differentially rotating top 
lid. Shadday, using a laser-Doppler velocimeter, measured the axial velocity and the 
non-wheel-flow part of the azimuthal velocity component. The measured results 
compared favorably with computed results obtained using a finite-difference 
simulation of the full, non-linear, axisymmetric governing equations. In Shadday’s 
finite-difference simulation the mesh was refined considerably at the ends in order to 
give sufficient resolution of the relatively thin Ekman layers. 

The presence of E iI3 shear layers at both the lateral wall and the free surface as 
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reported in Shadday ef al. [l] (E being the Ekman number = v/Q/‘) and the 
investigation thereof can greatly test and extend our understanding of the dynamics of 
strongly rotating flows. In this paper we examine in particular the application of the 
Ekman matching condition to flow in a non-full cylinder as an alternative to full 
resolution of the Ekman boundary layer as was done in Shadday’s calculations. We 
will examine both the theoretical basis and the actual implementation into a tinite- 
difference calculation. In the case of strongly rotating flows, successful implemen- 
tation of this matching condition can result in at least an order of magnitude saving 
in computer time, since extremely fine meshes are no longer needed to describe the 
thin, but crucially important, Ekman layers at either end. Finally, the results obtained 
using the analytical boundary layer matching in a finite-difference calculation will be 
shown to compare quite favorably both with results obtained numerically with fully 
resolved Ekman layers and with experimental measurements. 

PROBLEM FORMULATION 

A schematic diagram of the problem which forms the basis of this discussion is 
shown in Fig. 1. For the experimental runs made, the 19.4.cm-long, 18.9-cm-diam. 
Plexiglas cylinder was filled to 30% by volume with a glycerin-water solution having 
a viscosity 10 times that of pure water. The cylinder rotation rate (1000 rpm) was 
sufficiently high that the free surface was essentially vertical and the upper lid was 

lnviscid 
Region 

FIG. 1. Schematic diagram of the problem. 
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oversped by 5%, that is, 50 rpm, to provide the drive for a non-wheel-flow velocity 
component. More details of the experiment, including the LDV measurement 
techniques, may be found in Shadday et al. [ 11. 

ANALYSIS 

An analysis of the problem being considered here has been given by Greenspan ]2] 
and is reproduced in this section. Although not the case in the experiment, we assume 
for the rest of this section that all boundary layer thicknesses are small relative to the 
size of the cylinder and the thickness of the fluid layer. Under these asymptotic 
conditions the flow is divided into an essentially inviscid core and viscous layers at 
the walls and free surface. With the prescribed conditions, fluid in the horizontal 
Ekman boundary layer is accelerated radially by centrifugal forces and expelled at 
the top corner of the cylinder into a sandwich structure of two vertical shear layers. 
The flow proceeds downward in a sidewall boundary layer to the bottom Ekman 
layer where fluid is transported radially inward, feeding as it goes, the local, vertical 
flux required by the top plate. The structures of the Ekman layers depend mainly on 
the local azimuthal components of interior velocity which here is the basic angular 
velocity fl plus half the differential that is imposed at the endplate, the same 
conditions as when the container is completely tilled with liquid. The local Ekman 
layers, unaware of the air core, transport exactly that amount of fluid that would be 
appropriate for the tilled cylinder. It follows that all the transport that would have 
ordinarily occurred in the domain which is now an air core, is condensed into a 
vertical boundary layer at the free interface. 

The flow is characterized by the values of three dimensionless parameters: the 
Rossby number E = AfJ/R, the Ekman number E = v/Ql’ and the radius of the air 
core ai (scaled by the height of the cylinder), where v is the kinematic viscosity of the 
liquid, B is the angular velocity and 1 is the length of the cylinder. 

If a, is the dimensionless radius of the cylinder, then it is assumed that E and 6 are 
very much smaller than 1 - aila,, < 1 so that a linearized, asymptotic theory is 
applicable. In this case, the flow is of a boundary layer type and may be described as 
consisting of the separate domains shows in Fig. 1. The complete, dimensionless 
governing equations relative to the rotating frame are [3] 

I a aw 
--rru+az=O' r ar (1) 

(2) 

(3) 

O=-g+E [+;(rg) +$]. 
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The fluid velocities on the solid walls of the container relative to the rotating frame 
are 

u=w=O,v=r on z= 1, 

u=v=w=o on z=O and r=a,. 
(5) 

Dynamical equilibrium at the interface with the “vacuum” core implies that both 
pressure and the stress components are zero: 

(6) 

Axial symmetry has been invoked and the free surface is assumed to be a circular 
cylinder, r = ai, so that the kinematic condition at this boundary is 

u = 0. (7) 

The inviscid interior flow in the region ai ( r < a, and valid for E and E small 
(when E”4 < 1 - a,/a, < 1) is given by 

q, = v,(r)8 + w,(r) k^, 

where the unknown functions are to be determined. 
The Ekman boundary layers at the end caps essentially control the flow since it is 

through these regions that the forcing is communicated to the body of fluid. The total 
mass flux in the Ekman layer at any radial position depends on the velocity of the 
wall relative to that of the interior fluid. It can be shown ]3] that the tangential 
velocities in this boundary layer are given by 

q, = -(v, - V,) exp(-i) sin [, 

qe = -(vI - VW> exp(-C> ~0s i, 
(8) 

where c is a stretched boundary layer coordinate equal to E “‘z at the bottom and 
E-l’*{ 1 - z) at the top. The above imply a normal flux from the interior which for 
the present problem is given by [3] 

E ~3 I/* 
w = -?$r(v - r) at 2 = I, ai < r < a,, 

w = -57 ay rv 
atz=O,ai<r<ao. 
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The total radial mass flux in the boundary layer is obtained from Eq. (8) by 
integration and is 

MT = 27crE’12 u d[ = -~YE”~(v~ - r). (11) 

The mass flux in the bottom boundary layer is 

M B = -nrE1/‘v I’ 

Since there can be no radial transport in the inviscid interior up < r < a; and the 
total flux in this direction is zero, it follows that M, + MB = 0, or 

1 
VI = iry w, = ;E”’ > (12) 

M 
T 

= fnr2E’12 = -MB. (13) 

Note that the radial flux at r depends only on the local interior value of the azimuthal 
velocity component. In particular, as r -+ ai which is the free interface, the Ekman 
layer fluxes are 

M 
T 

= $&‘I2 zz -MB 
I (14) 

or identical to the values when the cylinder is completely filled and there is no 
vacuum core. There must then be a vertical flux along the free surface to close the 
mass transport from the bottom to top Ekman boundary layers whose magnitude is 

MQi = fna fE li2. (15) 

Likewise, at the outer wall r = a,, there must be a net downward flux 

Mao = - $naiE’12. (16) 

These mass transport constraints determine the structure of the vertical boundary 
layers at these locations. 

At r = a,, there are two sidewall boundary layers: an O(E’13) layer required to 
transport fluid and an O(E1’4) layer essential to adjust the azimuthal velocity 
component to its wall value. At r = ai, however, only an O(E”3) layer develops to 
meet the flux conditions because the zero stress constraint can be satisfied without the 
thicker boundary layer. For the conditions of most interest E”2 < E”j < E”4 < 1. 

With the preceding analysis the lengthy procedure of calculating the flow in the 
vertical boundary layer in terms of trigonometric series [3] will yield the rest of the 
flow field. Rather than evaluate the series, we show in the next section how the 
preceding analysis may be used in a finite-difference simulation. 
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IMPLEMENTATION INTO A FINITE-DIFFERENCE ALGORITHM 

In this section we consider the implementation of the preceding analysis into a 
finite-difference calculation. In the numerical work reported in Shadday et al. [ I], the 
mesh was refined drastically at the horizontal boundaries and the no-slip condition 
was applied directly. Here instead we apply Eqs. (9) and (10) as equivalent 
conditions on the interior flow. A similar matching procedure was used at the 
horizontal surface in Ribando [4] but in that analysis of a flow involving mass 
injection and removal through the porous sidewall, the Ekman layers were inconse- 
quential anyway. In the present problem the Ekman layers control the flow and are 
quite thin. Since the allowable timestep for numerical stability is a function of the 
mesh spacing, there is ample economic incentive for an alternative to mesh refinement 
in the case of a strongly rotating fluid. 

The numerical algorithm used here has been described in detail in Ribando [4] and 
is essentially a variant of the well-known MAC algorithm [S J. Here we will discuss 
the overall algorithm briefly and the changes involved in implementing the preceding 
analysis in detail. 

The full axisymmetric, dimensional governing equations written relative to a coor- 
dinate system rotating with the container at angular frequency B are 

(17) 

(18) 

(19) 

(20) 

The pressure has been combined with the centrifugal acceleration to form the reduced 
pressure appearing above [ 31. 

The mesh system employed in the finite-difference solution of the above equations 
is shown in Fig. 2. Pressure is defined at the center of the primary control volumes; 
control volumes for the radial and vertical velocity are shifted a half grid space to the 
right and a half grid space upward, respectively. To facilitate a substitution used 
later, the azimuthal velocity has been defined at the same point as the radial velocity. 

In an abbreviated form Eqs. (17), (18), and (19) are differenced as 
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u!y - 4j 
At 

= ConvectionNi,j + 2LQ$7 + CurvatureTj 

(21) 

t,?? ’ 1.J - vtj 

At 
= Convectioncj - 2RuTf’ + Curvature‘zj + Viscousri, (22) 

w;; ’ - WTj 1 pjyj’ ’ - p;;.; 1 
At 

= Convection’? + - 
1.J 

PO AZ 
+ Viscous.: j, (23) 

where the superscripts N and N + 1 indicate the present and advanced time levels, 
respectively. 

With the radial and azimuthal velocities defined at the same point, Eq. (22) may be 
used to eliminate VT’ r in Eq. (21). This leaves one equation involving only the 
variables ui,j and pi,j at the advanced level. Requiring continuity to be satisfied at the 
new time level (and ignoring curvature only for purposes of this discussion), Eq. (20) 
in difference form becomes 

u~st,~j AZ - uyj’ ’ AZ + w,Ej”, Ar - ~‘2,: ’ Ar = 0. (24) 

Equation (21) with VT’ ’ eliminated using the substitution discussed, an analogous 
expression for ur?r’, j, Eq. (23) for w: ’ and an analogous expression for wtj”, are 
substituted into Eq. (24) to obtain a Poisson equation for pressure at the new time 
level. 

The complete computational sequence is 

1. Update explicit terms (convection, viscous, curvature) in Eqs. (21), (22), 
and (23). 

2. Substitute Eq. (22) into (21) and solve for ZL~,; ’ . 

FIG. 2. Nodal 
components. 

used in the finite-difference calculation for pressure and the velocity 
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3. Substitute Eq. (23) and the modified Eq. (21) and their counterparts at 

M'i,j- I and Ui- I,j into Eq. (24). 

4. Solve resulting Poisson equation for pressure. 

5. Update all velocities using new pressure field. 

6. Update all explicit boundary conditions. 

7. Increment time and repeat until steady state is reached. 

Since this calculation does represent a true transient, the total number of timesteps 
needed is simply the length of the transient (typically a small multiple of the spinup 
time scale, an estimate of which is given in Greenspan [3]) divided by the timestep 
used. As an example, for the calculation corresponding to Shadday’s experimental 
work, approximately 500 timesteps were used. 

A direct method (Gauss elimination [6]), has been used to solve the Poisson 
equation in step 4; thus there is no iteration at all in this scheme. Also in substituting 
the momentum equations into the continuity equation, the divergence at the previous 
time level has been retained at all internal cells 151. The treatment at the ends 
discussed later is predicated on the net flow out at either end being identically zero at 
each timestep. Thus no divergence control problems have arisen. 

As in Ribando [4] the Coriolis terms have been treated fully implicitly rather than 
explicitly as in Beardsley et al. [ 71 and others. The present implicit treatment of all 
the terms in that subset of the full governing equations which describes inviscid 
inertial waves [3] is analogous to the treatment of acoustic waves in the ICE 
(implicit continuous-fluid Eulerian) technique described by Harlow and Amsden [S ] 
and Hirt and Nichols [9]. Analogous benefits in terms of allowable timestep and 
absence of truncation error-induced waves may be expected. 

The treatment of the inner free shear boundary is unchanged from Ribando [4]. 
Shear due to the air in the “vacuum” core has been neglected as have surface tension 
effects. The inner free boundary has been allowed to move radially a small fraction of 
a grid space; under the conditions of interest here, the displacement is miniscule. The 
fully implicit treatment of this displacement is described fully in [4]. The application 
of the no-slip condition at the outer vertical sidewall is straightforward. At the 
horizontal boundaries the appropriate conditions are Eqs. (9) and (10) written here in 
dimensional form [ 3 ] : 

1 v 

i 1 

‘I2 1 a 
“T=-T n 7% r(+ - VT) at z = zr. 

1 v 

t i 

‘j2 1 a 
u’B = T n 

--mR 
r at- 

at z=z”. (10’) 

Here as before, VT is the relative (overspeed) velocity between the top disk and the 
rotor. In Ribando [4] the Ekman flows were treated explicitly; that is, w”’ ’ = f(t”“). 
The separable pressure Poisson was solved using cyclic reduction. In the present case 
the Ekman layers drive the flow and a fully implicit of the Ekman flow would appear 
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to be more appropriate. The advanced time level azimuthal velocities appearing on 
the right-hand sides of Eqs. (9’) and (10’) may be expressed using Eq. (22) in terms 
of the advanced time level radial velocities at the same location (Fig. 2). Note that 
the Ekman suction flow is thus dependent on the pressure gradient along the 
boundary rather than on an axial gradient, the normal situation for an axial velocity 
component. The finite-difference expressions arising from Eqs. (9’) and (10’) replace 
the forms for @j” and wTjt-‘r which normally come from Eq. (23), at the top and 
bottom, respectively, in Step 3 of the calculational procedure. The result is that the 
coefficients of the horizontal terms in the pressure equation are slightly different at 
the top and bottom rows of cells from what they are in the rest of the field. The linear 
equations resulting from this non-separable Poisson-like equation may be readily 
solved using Gauss elimination. Unless the timestep is being changed during the 
calculation, the decomposition of this large, banded system needs to be done only 
once, at the first timestep. 

Let us consider in more detail the finite-differencing of Eqs. (9’) and (10’) in view 
of Fig. 2. We will consider the solid rectangle in Fig. 2 as one of the cells comprising 
the first row along the bottom of the cylinder. The (axial) flow through the lower face 
is the Ekman suction flow given by Eq. (10’). Because of the staggered mesh the 
interior values of the azimuthal velocity, which appear in Eq. (lo’), are defined a half 
grid space above the lower edge. These interior values of azimuthal velocity are 
computed in the normal way. As in the interior of the flow the new azimuthal 
velocity is expressed in terms of the new radial velocity using Eq. (22). In both the 
radial and azimuthal momentum equations the shear stress acting on the lower faces 
which involve axial derivatives are negated by applying a “slip” condition; the effect 
of the “no-slip” boundary having already been taken into account by use of the 
compatibility relation (Eq. (10’)). Axial shear stress terms are operative in the 
interior of the fluid. 

The finite-difference representation of Eq. (10’) is 

where both sides have been multiplied by 271. The summation of the left side across 
the radius is the net flux out the Ekman layer and ought to equal zero. In summing 
the right-hand side we note that internal to the flow there will be pair-by-pair 
cancellation; that is, the term coming from the right-hand side of a cell will cancel 
with the term coming from the left-hand side of the cell to its right. Under certain 
conditions there may, however, be terms left over at the ends. These “leftovers” are 
precisely the sources and sinks discussed earlier in the analysis section. 

At the free surface, for instance, at the bottom the leftover term is 
-71(v/Q)“Zyi-~U~j-,; at the top the leftover term is -n(~/Q)“‘r,_,(v,~~, - V’v,r ,) 
which is equivalent to Eq. (11). At the outer wall there is no leftover term at the 
bottom. At the top there is a term due to the slip between the differentially rotating 
lid and the rotor; i.e., rc(~/Q))“~r~ I/,, which provides another source. 
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The general guideline is to finite-difference Eqs. (9’) and (10’) so that terms cancel 
pair-by-pair in the middle, but at the ends force mass conservation into and out of the 
Ekman layer by dropping the leftover terms wherever they appear. This automatically 
will create the sources and sinks as appropriate. For a full rotor we note that there 
would be no leftover terms at the center; there would be at the outer edge of a 
differentially rotating lid. For a spinup problem involving a full rotor and no-slip 
walls. there would be no sources or sinks at all. 

RESULTS 

The procedure just described was incorporated into the same computer program 
used in Ribando [4] and Shadday et al. [ 11. The same parameters as were used by 
Shadday in his experiment and in his finite-difference solution using fully resolved 
Ekman layers were employed. These include the container speed (1000 rpm), the top 
lid speed (1050 rpm), the rotor length (19.4 cm), the inside diameter (18.9 cm), the 
film thickness (1.9 cm), and the fluid (glycerin-water, v = lo-” m’/sec). For these 
conditions E = 2.5 x 10e6. The radial grid spacing used was identical to Shadday’s. 
The 20 radial spacings ranged from 0.07 cm at the edges to 0.15 cm at the center of 
the fluid layer. The radial resolution was sufficient to give approximately four grid- 
points in the characteristic distance E "3L inward from the wall and free surface, a 
distance equal to about 15% of the film thickness. Shadday’s 31 axial spacings 
ranged from 0.02 cm at the ends to 1.6 cm at the middle; here the 3 1 axial spacings 
were a uniform 0.627 cm. The spinup time scale ((L2/flv)“‘) [3] for this case is 
about 6 set; this calculation was run out to 12.1 sec. In this and all other cases run 
the 5% overspeed was ramped in over a period of 1 sec. 

Figure 3a shows the streamlines resulting from Shadday’s calculations using fully 
resolved Ekman layers; Fig. 3b shows streamlines resulting from the present 
calculation using matching. Both streamlields were obtained by integrating the 
vertical velocity; the increment is a uniform 0.61 x 1O-6 m’/sec. The left edge in 
these and all succeeding contour plots is the free surface, not the centerline. In these 
two plots the horizontal coordinate has been expanded by a factor of 7.3 to better 
depict the structure of the vertical boundary layers. Contours of constant azimuthal 
velocity for the two calculations are presented in Figs. 4a and b; the increment is 
0.037 m/set. The “matched” results in Figs. 3b and 4b of course lack the details 
within the Ekman layers seen in the fully resolved results, but the agreement outside 
the Ekman layers is quite good in both sets of plots. In Figs. 5 and 6 we compare 
Shadday’s experimental measurements, his calculated values using resolved Ekman 
layers, and the present calculations using Ekman layer matching at two of the four 
axial locations where he took measurements. In all cases the results are non- 
dimensionalized by the peripheral speed of the top lid. The two calculations are seen 
to give comparable results, which compare well with experimental values. 
Discrepancies at the free surface between the LDV measurements and finite-difference 
solution have been discussed at length in Shadday et al. [ 11. 
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FIG. 3. Streamlines calculated using resolved Ekman layers (a) reproduced from Shadday e/ al. [I 1 
and matched Ekman layers (b). E = 2.5 X 10e6. Horizontal scale expanded by a factor of 7.3. 
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FIG. 5. Radial profiles of the axial and azimuthal velocities at z/L = 0.438 corresponding to the 
flows of Figs. 3 and 4 and Shadday’s experimental results. 

Since the flow is nearly linear, the timestep in both cases is limited by the explicit 
treatment of the diffusion terms (At < mini,j( 1/2v(l/dr’ + 1/Az2))). The larger 
minimum grid spacing in the present case resulted in a dramatic savings in computer 
time. The maximum allowable timestep was increased by a factor of about 13 in this 
case; with the computer time per timestep roughly equal, the total computer time 
decreased by about the same factor. The total computer time for the case using 
matching was 505 set on a CDC Cyber 730. 

Shadday’s measurements and the calculations presented thus far involve a 
relatively thin layer; that is, there is no inviscid region separating the shear layers. In 
Figs. 7 and 8 we present results for layers double and triple the thickness used by 



EKMAN MATCHING CONDITION 219 

/~-Finite-Difference 

’ (Resolved) 

Finite-Difference J Finite-Difference J 

(Matched) 

-5 1 I 
00 02 04 06 08 IO 

a r-o, / R-a, 

03 

? 02 > 

01 

b r-o, / R-o, 

3 

FIG. 6. Radial profiles of the axial and azimuthal velocities at z/L = 0.830 corresponding to the 
flows of Figs. 3 and 4 and Shadday’s experimental results. 

Shadday. All parameters, including the Ekman number, are as before; only the fill 
ratio and thus ai are changed. The vertical mesh used was the same as before. Rather 
than use more horizontal mesh points, the grid was expanded in the center, with, of 
course, a slight degradation in accuracy. Again, about four gridpoints were retained 
in the distance E"3L in from the sides, a characteristic length which stays constant 
for these three runs, but which becomes a smaller fraction of the film thickness as the 
latter increases. Seven or eight gridpoints were spaced over the entire shear layer 
thickness. In the plots the horizontal scales have been expanded by factors of 3.6 and 
2.4, respectively, to produce a uniformly sized plot. The streamline plots (Fig. 7a and 
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FIG. I. Streamlines and azimuthal velocity contours for same conditions as Fig. 3b, but film 
thickness doubled. Horizontal scale expanded by a factor of 3.6. Streamline increment = 
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in particular Fig. 8a) show clearly an interior region of uniform upflow. These same 
results are shown more dramatically in Fig. 9, where the axial velocity at midheight 
has been plotted as a function of radius for the three film thicknesses studied. The 
wall shear layer is virtually the same in all cases. Again a uniform region of 
upwelling is evident in both the double and triple thickness layers, but not in the 
single thickness layer. Clearly the assumption of an inviscid core between the vertical 
shear layers used in the analysis section is really not valid for the single thickness 
layer. In the thicker layers there is such a core where as noted from Eq. (3), there is 
no radial velocity and the other velocity components are very close to the inviscid 
values predicted by Eq. (12). The strength of the free surface shear layer clearly drops 
as the layer thickness increases and would disappear entirely if the container were 
full. To check the assertion that the free surface shear layer transports that amount of 
fluid that would otherwise be transported through the now-empty core, the following 
calculation was made. For the double and triple thickness layers the computed 
midheight axial velocity was numerically integrated from a point judged to be the 
center of the region of uniform upwelling inward to the free surface. The value of the 
resulting axial mass flow was compared to that obtained by multiplying the mean 
axial velocity in the uniform zone by the cross-sectional area from the same point 
into the certerline. The mass flows matched within 0.02% for the double thickness 
layer and 0.5% for the triple thickness layer, values which are well within the 
anticipated accuracy of the finite-difference approximations. 

FIG. 9. Axial velocity at midheight for the flows of Figs. 3b, 7, and 8. 
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Since the motivation for using matching rather than resolution is even stronger 
with still lower Ekman numbers, a run was made using Shadday’s parameters except 
for the fluid viscosity which was taken as that of pure water (V = lo-’ m’/sec, 
E = 2.5 x IO-‘) rather than that of the glycerin/water solution he used. The cost to 
compute this flow with resolution of the Ekman layers would be exorbitant, since 
their estimated thickness is only about 0.05% of the rotor height. The vertical mesh 
was unchanged from the previous cases, but the horizontal grid was redistributed to 
give better resolution in the sidewall boundary layers. For this case the spinup time 
scale was estimated as 18.9 set; the calculation was run until 39.8 set had elapsed. 
Computer time was 515 sec. A sequence of plots (Figs. lO.la-10.4b) shows the 
spinup process at four different times during the transient. So that the plots may be 
compared, a common streamfunction increment (0.199 x 10m6 m’/sec) and a 
common azimuthal contour increment (0.0209 m/set) have been used for all plots. 
Early in the transient (4.0 set) the flow in the interior (Fig. lO.la) is largely radial, 
and the sidewall boundary layers are developing. This radial inflow of higher angular 
velocity fluid is the mechanism by which the spinup takes place. At this time only a 
few azimuthal velocity contours have appeared (Fig. lO.lb). At about 8.0 set the 
radial flow in the interior is less intense (Fig. 10.2a); more of the radial transport is 
through the bottom Ekman layer. Several more azimuthal contours have appeared 
(Fig. 10.2b). The process continues in Figs. 10.3a and b (15.9 set). By the last plot 
(Fig. 10.4a and b, 39.8 set), there is little radial transport in the interior and the 
spinup is essentially complete. 

CONCLUSIONS 

We have demonstrated here the appropriate form of the Ekman matching condition 
for the case of an incompressible fluid in a partially filled, strongly rotating right 
circular cylinder. With the fully implicit treatment of both the coriolis terms and the 
Ekman flow described here, the resulting MAC-derived, time-marching algorithm is 
extremely stable even at very low Ekman numbers. Assuming that the matching 
condition is finite-differenced so that there is pair-by-pair cancellation away from the 
edges, then the fact of enforcing mass conservation into and of each Ekman layer will 
create sources and sinks where appropriate. Since good agreement with experiment 
and fully resolved results was found, the advantage of using the matching condition 
rather than grid refinement and direct application of the no-slip condition is evident. 
With the latter the minimum (vertical) grid spacing must be of order l/3 to l/5 of the 
Ekman layer characteristic thickness; that is, l/3 to l/5 of E"'L. With the matching 
condition used at the ends, then it is the shear layers on the walls and free surface 
which must be adequately resolved. The minimum (horizontal) grid spacing must be 
of order l/3 to l/5 of the shear layer characteristic thickness; that is, l/3 to l/5 of 
E"3L. For small Ekman number the latter may be an order of magnitude or more 
greater. The computer time savings will be commensurate. 
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